If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-43x=0
a = 6; b = -43; c = 0;
Δ = b2-4ac
Δ = -432-4·6·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-43}{2*6}=\frac{0}{12} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+43}{2*6}=\frac{86}{12} =7+1/6 $
| 6w+3=6(w+5)−33 | | 6x-3=-4x+56 | | -6-7x=9-4x | | 2x^2-19x-10=90 | | 6x-(4x-3)=21 | | 6-3k=13-2k | | .8z=31 | | -6+2m=m-4 | | 4/5z=31 | | -4+8r-8r-5=r-5 | | 6+6n=7n | | 5(x+2)^2-29(x+2)=6 | | 7x-2=48+28x-28 | | 2.5x+.5=6.25 | | 12x−6=12 | | 4x2+8x+-20=0 | | (20*30*h)/2=16500 | | 1/3y+1/4=5-12 | | -119=7(1+6r) | | 5/11=42/a | | u^2=243 | | (2x+1)(x-10=90 | | 20/x=4/3 | | 1x+4=3x+-1x+2 | | x/11+x/11=5 | | X^2+2y=15 | | 3k-(1/3)=(4/9) | | 5p+8=13+4p= | | 4x-2=24x+13 | | 32=2(-8a+4)-8-7-4a | | 4y+4y^2=8 | | 6(1+2x)=-90 |